
Guy	Ezer	&	Roee	Wodislawski

Prof.	Sivan	Toledo

Advanced	Computer	Systems,	TAU

April	2018

Scalable	Sensors	Network
Our	project's	main	goal	is	to	create	an	infrastructure	for	a	"sensors	network"	in	which	multiple
endpoints	communicate	with	a	central	server,	sending	information	about	attached	sensors.
The	server	role	is	to	to	gather	information	and	manage	the	different	endpoints	by	responding	to
their	queries.
Examples	for	fitting	applications	are	access	control	and	motion	detection.

The	project	is	designed	with	scalability	in	mind.	The	communication	protocols	and	software
libraries	were	chosen	to	allow	addition	of	features,	new	sensors	and	expanding	the
communication	protocol	with	ease.

This	document	will	describe	the	project's	components	-	from	the	main	board	and	the	external	WiFi
chip	to	the	software	packages	we	used	to	reach	our	goals.	It	will	also	include	details	on	how	we
combined	these	components	together.

Link	to	Youtube	video	of	project	demonstration.

https://www.youtube.com/watch?v=wUpakpa-QNc


General	structure

As	mentioned,	the	network	consists	of	multiple	endpoints	and	a	single	server.	
The	main	component	in	each	endpoint	is	the	CC1350	LaunchPad	board,	which	we	used	in	class.	
The	network	relies	on	WiFi	for	communication	between	the	endpoints	and	the	server	and	since
this	board	doesn't	support	WiFi,	each	endpoint	also	includes	NodeMCU	ESP8266	board	for	WiFi
communication.	
The	server	is	written	in	python	and	can	be	run	in	any	machine	which	holds	the	server	static	IP	in
the	local	network.

CC1350

This	board	gathers	information	from	the	different	sensors	attached	to	it,	then	creates	queries	with
said	information	to	send	to	the	server.	The	board	can	also	receive	responses	back,	which	will
guide	it	in	operating	those	sensors	and	in	general	activity.

Using	the	TI-RTOS	kernel,	each	sensor	can	be	represented	with	a	task	whose	purpose	is	to
create	the	queries	and	if	needed	wait	for	the	server	response	and	act	upon	it.

In	order	to	communicate	with	the	server,	the	board	has	a	UART	connection	to	the	ESP8266
board,	which	acts	as	a	tunnel	between	them.

When	waking	up,	the	board	waits	for	a	magic	from	the	ESP8266	through	the	UART	connection,
registers	as	an	endpoint	and	then	starts	execution	of	the	sensors	tasks.

Code	snippet	for	encoding	a	node	message	(query)	in	the	board:



ESP8266

We	use	an	ESP8266	in	order	to	communicate	with	the	server.	The	ESP8266	serves	as	a	'tunnel'
between	the	CC1350	and	the	server	-	it	is	wired	to	the	CC1350	UART	pins,	and	forwards	tcp/uart
messages	between	the	two.

We	are	using	a	NodeMCUv3	ESP8266	model.
A	few	bash	scripts	were	written	in	order	to	automate	the	flashing	procedure	using	esptool.	See	the
installation	doc	on	the	documentation	dir	for	more	information.

The	ESP8266	runs	the	Arduino	Core.
We	discuss	our	choice	of	Arduino	Core	and	other	alternatives	in	the	following	sections.

Arduino	port

At	first	we	used	MicroPython,	but	after	encountering	multiple	UART	problems	we	moved	to	the
Arduino	port	which	provides:

Easy	Arduino-like	API

Debug-by-printf	capabilities

Large	development	community

In	the	newer	IDE	versions,	we	had	to	change	to	flashing	toolchain	inside	the	Arduino	IDE	in
order	for	the	flashing	to	work,	which	took	a	lot	of	work.	Other	than	that	we	had	a	good
experience	with	using	the	Arduino	port.

Micropython	and	other	alternative

Originally,	our	initial	choice	was	Micropython.
Micropython	(uPython)	is	a	light	implementation	of	the	Python3	programming	language	that	is
optimized	to	run	on	MCUs.

Pros:

Relative	ease	of	developing	once	uPython	is	up	and	running	on	the	MCU
Filesystem	support	-	configuration	can	be	done	easily
Web	interface	(webrepl)	which	makes	remote	maintenance	possible
Large	community	-	which	results	in	stable	images,	documentation	and	online	help

http://www.nodemcu.com/index_en.html
https://github.com/espressif/esptool
https://github.com/esp8266/Arduino
http://micropython.org/
http://micropython.org/webrepl/


Cons:

Threads	are	not	supported	on	the	ESP8266	port	(but	asynchronous	io	is	supported)
Not	all	UART	ports	are	accessible	via	the	API,	in	fact,	only	one	UART	port	is	accessible
Debugging	is	hard	-	because	of	the	two	cons	above,	in	addition	for	no	PDB	(python
debugger)	support

The	UART	issues	took	too	much	time	to	handle	so	we	moved	to	the	Arduino	port.

Other	alternatives	we	looked	over

1.	 Using	a	ready	AT-CMD	firmware
Relatively	easy	'out	of	the	box'	solution
Configurability	is	a	problem
Can	not	modify	the	firmware
No	ability	to	store	logs

2.	 Using	the	SDK
Most	control	we	can	get	over	the	MCU
no	'out	of	the	box'	support	for	NodeMCUv3	-	we've	configured	it	overselves
API	was	inconvenient

UART	Issues

The	ESP8266	we	were	using	has	three	UART	ports.	Of	those	three,	UART1	only	has	a	TX	line
and	UART0	is	not	accesible	by	uPython.	uPython	API	also	maps,	wrongly,	UART0	to	UART2	and
UART2	to	UART0.	That	took	us	a	bit	of	time	to	understand.	In	addition,	uPython	maps	REPL's
(read	eval	print	loop)	standard	input	and	output	to	UART2	-	meaning	that	any	use	of	the	REPL	-
including	the	webrepl	-	can	not	be	done	when	using	UART2.	That	made	debugging	much	harder.

Unlike	MicroPython,	the	Arduino	core	provides	choise	of	multiple	IO	pins	to	function	as	UARTs	-
so	the	UART	configuration,	alongside	debugging	was	much	easier.

Server	&	Protocol

We	wrote	a	simple	TCP	server	to	handle	communication	with	the	different	endpoints.
The	server	is	written	in	Python3	and	is	based	on	the	asyncio	module,	which	allows	it	to	handle
connections	asynchronously.

As	taught	in	class,	the	asynchronous	model	is	better	for	servers,	since	it	requires	smaller	memory
footprint	than	threads	(no	stack	is	needed)	and	easier	client,	traffic	&	resource	management.

https://www.espressif.com/en/products/software/esp-sdk/overview


After	creating	the	TCP	connection,	each	endpoint	registers	and	receives	a	node	id.	After,	this
endpoint	will	use	this	node	id	to	identify	when	further	querying	and	receiving	information	back	from
the	server.	The	query	format	allows	the	endpoint	to	specify	type	(according	to	the	specific	related
sensor)	and	add	the	relevant	info.	The	mechanism	that	enables	the	server	and	the	endpoint	to
communicate	using	the	defined	protocol	will	be	described	in	the	following	section.

To	allow	this	flow	of	operation,	the	server	includes	components	for	registering	nodes	and	handling
incoming	messages.	According	to	the	message	type,	the	handler	will	forward	it	to	the	relevant
component	(e.g.	LedManager)	and	will	send	back	its	response.

The	server	design	is	flexible,	in	order	to	ease	the	addition	of	new	sensors	with	appropriate
handlers	or	making	changes	in	the	protocol	or	flow	of	operations.

Code	snippet	for	handling	a	node	message	(query)	in	the	server:

Protobuf

Protocol	buffers	are	a	flexible,	efficient,	automated	mechanism	for	serializing	structured	data.
Google	developed	Protocol	Buffers	for	use	internally,	with	the	design	goals	of	emphasized
simplicity	and	performance.

Protobuf	is	useful	in	developing	programs	to	communicate	with	each	other	over	a	wire	or	for
storing	data	-	after	defining	once	how	the	data	should	be	structured	once,	you	can	use	generated
source	code	to	write	and	read	your	structured	data,	using	a	variety	of	languages.

Numbered	fields	in	proto	definitions	obviate	the	need	for	version	checks	-	you	can	update	your



data	structure	without	breaking	deployed	programs.
New	fields	could	be	easily	introduced	without	the	server	&	client	needing	to	know	about	all	the
fields.

Comparing	to	other	popular	serializing	methods	(XML,	JSON),	Protobuf	is	considered	to	be
simpler,	less	ambiguous,	easier	to	use	programmatically	and	generates	smaller	data.

Protocol	buffers	currently	officially	supports	generated	code	in	Java,	Python,	Objective-C,	C++,
C#	and	more.

User	of	Protobuf	should	create	a	file	with	.proto	extension,	where	Protobuf	syntax	is	used	to	define
the	required	protocol	rules.	After	creating	such	files,	source	code	file	in	the	supported
programming	languages	can	generated	using	protoc,	a	generator	which	can	be	downloaded	or
built	from	source.

In	our	project,	we	needed	a	way	to	define	a	protocol	to	serialize	data	which	both	client	and	server
will	be	able	to	parse,	even	though	they	will	be	written	in	different	languages	and	run	in	different
environments.
On	top	of	that,	one	of	our	main	design	goals	is	scalability	which	is	a	main	feature	of	Protobuf.
These	requirements	together	with	the	general	advantages	mentioned	before	make	Protobuf
perfect	for	our	needs.

Code	snippet	from	the	definition	of	our	protobuf	protocol:



When	we	wanted	to	design	our	protocol	with	polymorphism	hierarchies	(messages	based	on
another	messages),	we	stumbled	upon	the	article	Protocol	Buffer	Polymorphism.
The	author	explores	different	option	to	implement	polymorphism	mechanism	using	Protobuf
syntax,	providing	interesting	influences	of	each.	Our	protobuf	code	was	written	based	on	the
suggested	mechanism.

More	information	and	documentation	of	Protobuf	can	be	found	in	Protocol	Buffers	developers	site.

Nanopb

Nanopb	is	a	plain-C,	small	code-size	implementation	of	Protobuf.	It	is	suitable	for	use	in
microcontrollers,	designed	to	fit	other	embedded,	memory	restricted	systems.
All	code	include	needed	to	use	is	pure	C	runtime,	with	small	code	size	(2–10	kB	depending	on
processor)	and	small	ram	usage	(typically	~300	bytes).
It	does	not	depends	on	dynamic	allocation	-	everything	can	be	allocated	statically	or	on	the	stack.
It	is	structured	in	a	way	which	allows	usage	of	either	encoder	or	decoder	alone	in	order	to	cut	the
code	size	in	half.
Includes	support	for	most	Protobuf	features	and	an	extensive	set	of	tests.

There	are	some	limitations,	as	some	speed	has	been	sacrificed	for	code	size
and	reflection	(runtime	introspection)	is	not	supported	-	you	can't	request	a	field	by	giving	its	name
in	a	string.

Since	our	development	board	does	not	allow	usage	of	the	officially	Protobuf	supported
programming	languages,
Nanopb	allows	us	to	enjoy	the	benefits	of	Protobuf	while	meeting	our	environment	requirements.

In	order	to	use	Nanopb,	some	static	(not	generated)	c	headers	and	implementation	files	are
needed	to	be	included	in	the	project.
Nanopb	also	provides	an	extension	to	protoc	(Protobuf	code	generator,	mentioned	above)	which
is	responsible	for	the	generation	the	c	source	files.

More	information	about	Nanopb	can	be	found	in	it's	Homepage.

Expanding	the	project

Here	we	detail	some	ideas	and	thoughts	which	we	had	while	working	on	the	project.	These	would
bring	features,	abilities	or	more	robustness	to	the	infrastructure,	but	due	to	lack	of	time	those	were
not	implemented:

http://www.indelible.org/ink/protobuf-polymorphism/
https://developers.google.com/protocol-buffers/
https://jpa.kapsi.fi/nanopb/


TinyFrame

Since	the	UART	communication	between	the	cc1350	and	the	esp8266	is	unreliable	some	sort	of
data-link	protocol	is	needed.
We	looked	over	some	data-link	protocols	such	as	PPP	(point	to	point	protocol;	has	a	large
overhead)	and	SLIP	(has	a	smaller	overhead	but	is	too	bounded	to	TCP/IP).

An	interesting	alternative	is	the	TinyFrame	library.
TinyFrame	is	a	library	for	parsing	data	frames	to	be	sent	over	a	serial	interface.	The	library
provides	a	high	level	interface	for	passing	messages	between	two	peers:	Multi-message	sessions,
response	listeners,	checksums	and	timeouts	are	all	handled	by	the	library.

Using	TinyFrame	will	make	the	sensor	management	easier	because	its	support	of	multi-message
sessions.
TinyFrame	has	a	relative	small	memory	footprint	as	well.

TinyFrame	also	provides	a	python	port,	meaning	it	can	be	ported	to	the	esp8266	(using
MicroPython),	but	the	python	port	is	not	mature	yet.

Since	we	lacked	time	to	stabilize	the	Python	port,	we	did	not	use	TinyFrame.	We	still	included	this
section	because	we	think	it	would	be	a	great	addition.

Robustness

There	are	more	places	in	which	more	robust	mechanisms	can	take	place,	from	the	server	being
able	to	manage	the	endpoints	better	(which	come	and	go)	to	the	main	board	that	is	currently
written	with	synchronous	UART	API,	which	we	now	find	to	be	sensitive	and	less	flexible	than	its
asynchronous	counterpart.

Also,	the	current	access	to	the	server	is	through	static	IP	address,	it	may	be	more	robust	to	use
DNS	but	it	would	require	the	relevant	setup.

Sensors	implementation

Originally,	we	wanted	to	include	implementation	of	sensors	to	showcase	the	infrastructure
abilities.	The	candidates	were	PIR	sensors	for	motion	detection	or	RFID	sensors	for	access
control.	
The	PIR	sensors	we	tried	to	communicate	with	(P/N	28032-ND)	did	not	work	well	and	returned
many	false-positives	so	we	couldn't	make	a	functioning	tracking	system.
As	for	RFID,	we	obtained	a	RFID-RC522	module	but	because	of	its	complex	API	(with	no
relevant,	existing	code	to	use)	we	decided	it	would	be	out	of	the	project	scope	to	implement
usage.

https://github.com/MightyPork/TinyFrame
https://github.com/MightyPork/PonyFrame
https://www.digikey.com/product-detail/en/parallax-inc/28032/28032-ND/4700912


We	also	thought	about	adding	support	for	TCP/IP	based	components,	such	as	cameras,	via	the
ESP8266	to	be	accessible	to	the	server.

Currently,	we	use	the	board's	built-in	button	as	a	sensor	and	light	the	built-in	leds	according	to	the
server	responses.

Accessibility

Improving	general	logging	capabilities	of	the	boards	and	server,	with	optional	web	interface	for
detailed	information	from	endpoints	or	exporting	an	API	for	the	sensors	network	in	order	to	allow
applications	based	on	this	infrastructure	to	be	developed.


